Architecture of Enterprise Applications VII

Modifiability: and Security

.. Haopeng Chen

REIiabIe, INtelIig_ént and Scalabie Systems Group (REINS)
- Shanghai Jiao Tong University
" Shanghai, China
“e-mail: chen-hp@sjtu.edu.cn

MODIFIABILITY L

REliable, INtelligent & Scalable Systems

* Modifiability is about the cost of change. It brings up
two concerns.

— What can change (the artifact)? A change can occur to any
aspect of a system

 the functions that the system computes

 the platform the system exists on

* the environment within which the system operates
* the qualities the system exhibits

* capacity

MODIFIABILITY L

REliable, INtelligent & Scalable Systems

— When is the change made and who makes it (the
environment)?Changes can be made to

 the implementation (by modifying the source code)
* during compile (using compile-time switches)
* during build (by choice of libraries)

* during configuration setup (by a range of techniques, including
parameter setting)

* during execution (by parameter setting).

— A change can also be made by a developer, an end user, or a
system administrator.

* Once a change has been specified, the new
implementation must be designed, implemented,
tested, and deployed. All of these actions take time
and money, both of which can be measured.

MODIFIABILITY L

REliable, INtelligent & Scalable Systems

Source of stimulus.

— This portion specifies who makes the changes—the developer, a
system administrator, or an end user. Clearly, there must be machinery
in place to allow the system administrator or end user to modify a
system, but this is a common occurrence.

Stimulus.
— This portion specifies the changes to be made.

Artifact.

— This portion specifies what is to be changed. the functionality of a
system, its platform, its user interface, its environment, or another
system with which it interoperates

Environment.

— This portion specifies when the change can be made. Design time,
compile time, build time, initiation time, or runtime

MODIFIABILITY

REliable, INtelligent & Scalable Systems

* Response.

— Whoever makes the change must understand how to make it,
and then make it, test it and deploy it.

° RESpOI’lSC measure.

— All of the possible responses take time and cost money, and so
time and cost are the most desirable measures. Time is not
always possible to predict, however, and so less ideal measures

are frequently used, such as the extent of the change (number
of modules affected).

MODIFIABILITY

REliable, INtelligent & Scalable Systems

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus Wishes to add/delete/modify/vary functionality,
quality attribute, capacity

Artifact System user interface, platform, environment;
system that interoperates with target system

Environment At runtime, compile time, build time, design time

Response Locates places in architecture to be modified;

makes modification without affecting other
functionality; tests modification; deploys
modification

Response Measure Cost in terms of number of elements affected,
effort, money; extent to which this affects other
functions or quality attributes

MODIFIABILITY L .

REliable, INtelligent & Scalable Systems

> Artifact:
Stimulus: Code Response:
Wishes Modification
}Racﬂlamge Environment ﬁ Msa ge Eﬂﬁgc spon
) * No Side is
Source: At Design ﬁiasuma;a
Developer Time In Three

Modifiability Tactics L |

REliable, INtelligent & Scalable Systems

 Tactics to control modifiability have as their goal
controlling the time and cost to implement, test, and
deploy changes.

Goal of modifiability tactics

Tactics
»| to Control |————>»
- | Modifiability | Changes Made,

Modifiability: Tactics

REliable, INtelligent & Scalable Systems

 We organize the tactics for modifiability in sets according to
their goals.

— One set has as its goal reducing the number of modules that are directly
affected by a change. We call this set "localize modifications."

— A second set has as its goal limiting modifications to the localized
modules. We use this set of tactics to "prevent the ripple effect.”

— A third set of tactics has as its goal controlling deployment time and
cost. We call this set "defer binding time."

Modifiability: Tactics-localize modifications

REliable, INtelligent & Scalable Systems

* The goal of tactics in this set is

— to assign responsibilities to modules during design such that anticipated changes will be limited in
scope. We identify the following tactics.

e Maintain semantic coherence.

— Semantic coherence refers to the relationships among responsibilities in a module.

* The goal is to ensure that all of these responsibilities work together without excessive reliance on
other modules.

— Achievement of this goal comes from choosing responsibilities that have semantic
coherence.

— Instead, semantic coherence should be measured against a set of anticipated changes.
* One sub-tactic is to abstract common services.

* Anticipate expected changes.

— Considering the set of envisioned changes provides a way to evaluate a particular
assignment of responsibilities.

— The tactic of anticipating expected changes does not concern itself with the coherence of a
module's responsibilities but rather with minimizing the effects of the changes.

— In reality this tactic is difficult to use by itself since it is not possible to anticipate all
changes. For that reason, it is usually used in conjunction with semantic coherence.

Modifiability: Tactics-localize modifications AR

REliable, INtelligent & Scalable Systems

e (Generalize the module.

— Making a module more general allows it to compute a broader range of
functions based on input.

— The more general a module, the more likely that requested changes can be
made by adjusting the input language rather than by modifying the module.

* Limit possible options.
— Modifications, especially within a product line may be far ranging and hence
affect many modules.

— Restricting the possible options will reduce the effect of these modifications.

Modifiability: Tactics-localize modifications

REliable, INtelligent & Scalable Systems

o FATIUVFAH PR RUBISHIEAEAF R EAE Rg £, HEREHR
BELEWindows XPRAELLL I+, LM Ubuntu 8.04 kA DA _I [
E Rk s, IXFERLAT LB Gy 1 & N 5 2 1 #E R4
i H R A MIZ PR

o RATERUBISH, i1l T Utilitiest, BT ERTA KIAI
AR5y, XN T IR RIS SR A RGBT, =R

FEIX AN BT L

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

* Aripple effect from a modification is the necessity of making
changes to modules not directly affected by it.

 We identify eight types of dependencies that one module can
have on another:

1. Syntax of
— data.

* For B to compile (or execute) correctly, the type (or format) of the data
that is produced by A and consumed by B must be consistent with the type
(or format) of data assumed by B.

— service.

* For B to compile and execute correctly, the signature of services provided
by A and invoked by B must be consistent with the assumptions of B.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

2. Semantics of

— data.

. For B to execute correctly, the semantics of the data produced by A and
consumed by B must be consistent with the assumptions of B.

— service.

. For B to execute correctly, the semantics of the services produced by A
and used by B must be consistent with the assumptions of B.

3. Sequence of

— data.

. For B to execute correctly, it must receive the data produced by A in a
fixed sequence. For example, a data packet's header must precede its
body in order of reception (as opposed to protocols that have the
sequence number built into the data).

— control.

. For B to execute correctly, A must have executed previously within
certain timing constraints. For example, A must have executed no longer
than 5ms before B executes.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

4. Identity of an interface of A.

— A may have multiple interfaces.

. For B to compile and execute correctly, the identity (name or handle) of
the interface must be consistent with the assumptions of B.

5. Location of A (runtime).
— For B to execute correctly, the runtime location of A must be
consistent with the assumptions of B.

. For example, B may assume that A is located in a different process on the
same processor.

6. Quality of service/data provided by A.

— For B to execute correctly, some property involving the quality of the
data or service provided by A must be consistent with B's
assumptions.

. For example, data provided by a particular sensor must have a certain
accuracy in order for the algorithms of B to work correctly.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

7. Existence of A.

— For B to execute correctly, A must exist.

. For example, if B is requesting a service from an object A, and A does not
exist and cannot be dynamically created, then B will not execute correctly.

8. Resource behavior of A.

— For B to execute correctly, the resource behavior of A must be
consistent with B's assumptions.

. This can be either resource usage of A (A uses the same memory as B) or
resource ownership (B reserves a resource that A believes it owns).

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

. Hide information.

— Information hiding is the decomposition of the responsibilities for an
entity (a system or some decomposition of a system) into smaller
pieces and choosing which information to make private and which to
make public.

— The public responsibilities are available through specified interfaces.

— The goal is to isolate changes within one module and prevent changes
from propagating to others.

— This is the oldest technique for preventing changes from propagating.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

Maintain existing interfaces.

If B depends on the name and signature of an interface of A,
maintaining this interface and its syntax allows B to remain
unchanged.

Of course, this tactic will not necessarily work if B has a semantic
dependency on A, since changes to the meaning of data and services
are difficult to mask.

Also, it is difficult to mask dependencies on quality of data or quality
of service, resource usage, or resource ownership.

Interface stability can also be achieved by separating the interface
from the implementation.

This allows the creation of abstract interfaces that mask variations.

Modifiability: Tactics-prevent the ripple effect AN,

REliable, INtelligent & Scalable Systems

— Patterns that implement this tactic include

* adding interfaces. Most programming languages allow multiple
interfaces.

* adding adapter. Add an adapter to A that wraps A and provides the
signature of the original A.

e providing a stub A. If the modification calls for the deletion of A,
then providing a stub for A will allow B to remain unchanged if B
depends only on A's signature.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

Restrict communication paths.

— Restrict the modules with which a given module shares data.

. That is, reduce the number of modules that consume data produced by
the given module and the number of modules that produce data

consumed by it.

— This will reduce the ripple effect since data production/consumption
introduces dependencies that cause ripples.

 Use anintermediary.

— If B has any type of dependency on A other than semantic, it is
possible to insert an intermediary between B and A that manages
activities associated with the dependency.

— Asbefore, in the worst case, an intermediary cannot compensate for
semantic changes.

Modifiability: Tactics-prevent the ripple effect

REliable, INtelligent & Scalable Systems

e The intermediaries are:
— data (syntax).

* Repositories (both blackboard and passive) act as intermediaries
between the producer and consumer of data.

— service (syntax).
The facade, bridge, mediator, strategy, proxy, and factory patterns all

provide intermediaries that convert the syntax of a service from one form
into another.

— identity of an interface of A.

A broker pattern can be used to mask changes in the identity of an
interface.

— location of A (runtime).
A name server enables the location of A to be changed without affecting B.
— resource behavior of A or resource controlled by A.

* Aresource manager is an intermediary that is responsible for resource
allocation.

— existence of A.

* The factory pattern has the ability to create instances as needed, and thus
the dependence of B on the existence of A is satisfied by actions of the
factory.

Modifiability Tactics-prevent the ripple effect

e, INtelligent & Scalable Systems

o [ERUBISHHEFIARZ A, H—AR S —1NH B IKX5)

Beant 4, 675 H - vl LLIE S 7

A7 P TiHK

« XNH B IRBIBean MR i AU L B AN BT ACHL, 1
et — N B A SIE Ay A k3 B

« XFEHZIH S IR BeanfEAL L B BRI AR K AR AR I,
NoyE 5H B BSI3E K]
o7 1L TS RN o

= P i AR A T AT BT
T BRI AAA, XA R

Modifiability: Tactics-defer binding time RE

REliable, INtelligent & Scalable Systems

* Our modifiability scenarios include two elements that are not satisfied by
reducing the number of modules to be changed—time to deploy and
allowing non-developers to make changes.

— Deferring binding time supports both of those scenarios at the cost of requiring
additional infrastructure to support the late binding.

* Many tactics are intended to have impact at lead-time or runtime, such as
the following.

— Runtime registration supports plug-and-play operation at the cost of additional
overhead to manage the registration. Publish/subscribe registration, for
example, can be implemented at either runtime or load time.

— Configuration files are intended to set parameters at startup.
— Polymorphism allows late binding of method calls.
— Component replacement allows load time binding.

— Adherence to defined protocols allows runtime binding of independent
processes

Modifiability: Tactics-defer binding time

« BATERUBISH S fit | A FiIA A &, "EAIEBAT I 90 € 2 i
Y5 Hx RS T W, SRR

NEIR2 YA Z EX . N=Fs
@ﬁﬁﬁﬁ% L@é#%ﬁkaAmTuﬁﬁﬁﬁﬁﬁo

I — I l LA . R
%¢,ﬁmﬁmﬁx#ﬁ%ﬁﬂﬁﬁﬁw~iﬁﬁ

Modifiability: Tactics-Summary N

REliable, INtelligent & Scalable Systems

SECURITY RE N

REliable, INtelligent & Scalable Systems

* Security is a measure of the system's ability to resist
unauthorized usage while still providing its services to
legitimate users.

— An attempt to breach security is called an attack and can take a
number of forms.

* Security can be characterized as a system providing
nonrepudiation, confidentiality, integrity, assurance,
availability, and auditing.

SECURITY

REliable, INtelligent & Scalable Systems

 Nonrepudiation

— is the property that a transaction (access to or modification of data or
services) cannot be denied by any of the parties to it. This means you

cannot deny that you ordered that item over the Internet if, in fact, you
did.

* Confidentiality

— is the property that data or services are protected from unauthorized
access. This means that a hacker cannot access your income tax
returns on a government computer.

* Integrity

— is the property that data or services are being delivered as intended.
This means that your grade has not been changed since your
instructor assigned it.

SECURITY

REliable, INtelligent & Scalable Systems

e Assurance

— is the property that the parties to a transaction are who they purport
to be. This means that, when a customer sends a credit card number

to an Internet merchant, the merchant is who the customer thinks
they are.

* Availability

— is the property that the system will be available for legitimate use.
This means that a denial-of-service attack won't prevent your
ordering this book.

* Auditing

— is the property that the system tracks activities within it at levels
sufficient to reconstruct them. This means that, if you transfer money

out of one account to another account, in Switzerland, the system will
maintain a record of that transfer.

SECURITY

REliable, INtelligent & Scalable Systems

 Source of stimulus.

— The source of the attack may be either a human or another system. It may have
been previously identified (either correctly or incorrectly) or may be currently
unknown.

— The attack itself is unauthorized access, modification, or denial of service.

e Stimulus.
— The stimulus is an attack or an attempt to break security.

— We characterize this as an unauthorized person or system trying to display
information, change and/or delete information, access services of the system,
or reduce availability of system services.

 Artifact.

— The target of the attack can be either the services of the system or the data
within it.

e Environment.

— The attack can come when the system is either online or offline, either
connected to or disconnected from a network, either behind a firewall or open
to the network.

SECURITY

REliable, INtelligent & Scalable Systems

* Response.

— Using services without authorization or preventing legitimate
users from using services is a different goal from seeing
sensitive data or modifying it.

— Thus, the system must authorize legitimate users and grant
them access to data and services, at the same time rejecting
unauthorized users, denying them access, and reporting
unauthorized access.

* Response measure.

— Measures of a system's response include the difficulty of
mounting various attacks and the difficulty of recovering from
and surviving attacks.

SECURITY RE N

REliable, INtelligent & Scalable Systems

Portion of Scenario Possible VValues

Source Individual or system that is correctly identified,
identified incorrectly, of unknown identity who is
internal/external, authorized/not authorized with
access to limited resources, vast resources

Stimulus Tries to display data, change/delete data, access system
services, reduce availability to system services

Artifact System services; data within system

Environment Either online or offline, connected or disconnected,

fire-walled or open

SECURITY RE

REliable, INtelligent & Scalable Systems

Response Authenticates user; hides identity of the user; blocks
access to data and/or services; allows access to data and/or
services; grants or withdraws permission to access data
and/or services; records access/modifications or attempts
to access/modify data/services by identity; stores data in an
unreadable format; recognizes an unexplainable high
demand for services, and informs a user or another system,
and restricts availability of services

Response Measure Time/effort/resources required to circumvent security
measures with probability of success; probability of
detecting attack; probability of identifying individual
responsible for attack or access/modification of data
and/or services; percentage of services still available under
denial-of-services attack; restore data/services; extent to
which data/services damaged and/or legitimate access
denied

SECURITY RE

REliable, INtelligent & Scalable Systems

| Data within

Stimulus: the System| Response:

Tries to System

Modify Envi ¢ aintains

. Information nvironment: Audit Trail

Source Heshonse
Gnmy Nnrrnal Correct
ndividual Restored

within a
Day

SEecurity Tactics LT

REliable, INtelligent & Scalable Systems

» Tactics for achieving security can be divided into those
concerned with
— resisting attacks
— detecting attacks
— recovering from attacks.

e Using a familiar analogy
— putting a lock on your door is a form of resisting an attack,

— havinkg a motion sensor inside of your house is a form of detecting an
attack,

— and having insurance is a form of recovering from an attack.

Goal of security tactics

Security Tactics-resisting attacks 0

REliable, INtelligent & Scalable Systems

« we identified nonrepudiation, confidentiality, integrity, and assurance as
goals in our security characterization.

* The following tactics can be used in combination to achieve these goals.
— Authenticate users.
— Authorize users.

— Maintain data confidentiality.
* Encryption
* Communication links
* virtual private network (VPN)
» Secure Sockets Layer (SSL)

— Maintain integrity.
— Limit exposure.

— Limit access.
* Firewalls

Security Tactics-resisting attacks

REliable, INtelligent & Scalable Systems

o BWATIEFSERUBISH), B PLEI G k5 B S A 8080% [A]
Viiml, I HAR S U R RUBIS RV SRAS 4 B K B0 46 . %ot
T A DR, FATWET T OGESEAL
i¢%F R N 2 JE AT 2 B EE A é%Fﬁ*ﬁ
1 S, N TR NS R R RESR RN,
hﬁ%@ZEﬁﬁﬁw A Ui o

Security Tactics-detecting attacks RE TN

REliable, INtelligent & Scalable Systems

* The detection of an attack is usually through an intrusion
detection system.

Such systems work by comparing network traffic patterns to a database.

In the case of misuse detection, the traffic pattern is compared to
historic patterns of known attacks.

In the case of anomaly detection, the traffic pattern is compared to a
historical baseline of itself.

Frequently, the packets must be filtered in order to make comparisons.

Filtering can be on the basis of protocol, TCP flags, payload sizes, source
or destination address, or port number.

 Intrusion detectors must have some sort of

sensor to detect attacks,

managers to do sensor fusion,

databases for storing events for later analysis,
tools for offline reporting and analysis,

and a control console so that the analyst can modify intrusion detection
actions.

Security Tactics-detecting attacks 74?5 *

REliable, INtellig

o JRATET LA/E MR B RUBIS R MRS 2 LA NERM RS, 3
o FLH I 58 225) 2 G5 b T AR P B -

Security: Tactics-recovering from attacks

REliable, INtelligent & Scalable Systems

e Tactics involved in recovering from an attack can be divided into

— restoring state
— attacker identification

* The tactics used in restoring the system or data to a correct state overlap
with those used for availability

— since they are both concerned with recovering a consistent state from an
inconsistent state.

— One difference is that special attention is paid to

* maintaining redundant copies of system administrative data such as passwords,
access control lists, domain name services, and user profile data.

* The tactic for identifying an attacker is
— to maintain an audit trail.

Security Tactics-Summary RE T N

REliable, INtelligent & Scalable Systems

References RE N

REliable, INtelligent & Scalable Systems

« Software.Architecture.In.Practice.2nd.Edition

Thank You!

